Bell Ringer - Solve the equation.

$$x = \sqrt{9x - 14}$$

Bell Ringer - Solve the equation.

$$x = \sqrt{9x - 14}$$
 $(x)^{3} = (\sqrt{9x - 14})^{3}$
 $x^{3} = 9x - 14$
 $x^{3} = 9x - 14$
 $x^{3} - 9x + 14 = 0$
 $(x - 7)(x - 2) = 0$
 $x = 7$ and $x = 7$

Chapter 12-3 Geometric Mean Notes

Mean =
$$\frac{x+y}{2}$$

Mean =
$$\sqrt{xy}$$

Find the Algebraic Mean and Geometric Mean

1)
$$x = 3$$
 and $y = 27$

A.M =
$$\frac{x+y}{2}$$

= $\frac{3+27}{2}$
= $\frac{30}{2}$
= $\frac{15}{2}$

G.M. =
$$\sqrt{\times Y}$$

$$= \sqrt{3 \cdot 27}$$

$$= \sqrt{81}$$

$$= 9$$

Find the Algebraic Mean and Geometric Mean 2) x = 5 and y = 45

Find the Algebraic Mean and Geometric Mean

2)
$$x = 5$$
 and $y = 45$

$$AM = \frac{5+45}{2}$$
 $= \frac{5}{2}$
 $= \frac{5}{2}$
 $= \frac{35}{2}$

$$GM = \sqrt{5.45}$$

$$= \sqrt{225}$$

$$= 15$$

Given the geometric mean, find y.

3) geometric mean is 30; x = 6

$$GM = \sqrt{xy}$$
 $30 = \sqrt{6y}$
 $(30)^{2} = (\sqrt{6y})^{2}$
 $900 = 6y$
 $150 = y$

Given the geometric mean, find y.

4) geometric mean is 16; x = 8

Given the geometric mean, find y.

4) geometric mean is 16; x = 8

$$GM = \sqrt{xy}$$
 $16 = \sqrt{8y}$
 $(16)^2 = (\sqrt{8y})^2$
 $256 = 8y$
 $32 = y$

Area Problem. Find the value of "x" if the area equals 120 square feet.

Area Problem. Find the value of "x" if the area equals 120 square feet.

$$x = 36 \text{ ft}$$